A PERIODIC PROBLEM OF HEAT CONDUCTION
IN A HOLLOW INFINITE CYLINDER

R. 8. Minasyan UDC 536.2.01

The problem of radial distribution of temperature in an infinite hollow cylinder is solved in
the presence of heat exchange with the surrounding medium in the case in which the heat ex~
change coefficients are periodic functions of time.

In practice, among various cases of heat exchange between a body and the surrounding medium, one
comes quite frequently across a case in which the heat exchange coefficients vary in the course of time.
An explicit solution is given helow to the problem of radial distribution of temperature in an infinite hollow
cylinder of circular cross section, in the presence, on the outer and inner surfaces, of heat exchange with
the surrounding medium when the heat-exchange coefficients are periodic functions of time. Suchproblems
arise, for example, in the case of periodically alternating vaporization and steam condensation on surfaces
or in a periodic blowing or injection into a coolant nozzle, ete. It is agsumed that heat sources within the
body vary periodically. In this case the temperature distribution function u(r, t) is a solution of the follow-
ing differential equation [1]:
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where a = A/cp is the coefficient of temperature conductivity; A is the heat-conduction coefficient; p is the
body density; ¢ is the heat capacity coefficient; P(r, t) is the rate of heat release; hy(t}, 8;{t), hy(t), S,(t)are
the heat-exchange coefficients and the temperature of the surrounding medium on the surfaces r = R, and
r = R, respectively. As regards the functions hy{f), hy{t}, §,(t), S,(t) and P(r, t) one assumes that they are
of bounded variation in the interval (0, &) where & denotes the period of the function u(r, t).

If to Eq. (1) one applies the finite complex Fourier transformation with respect to time t then the
following differential equation is obtained for the image of the funetion:
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Solving Eq. (3) one obtains
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where, for brevity, the notation
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ig introduced. Inthe above Jy{x), Y,{x)} are Bessel functions of zero order of the first or second kind re-
spectively; Mk and le are integration constants.

For k = 0 one has

R, 4
1 (2} 1 S. Rz , R a , | S" 1 l}
Fo(r) = —- My A~ A Py In-"2dr, Ve ln 22 | MY - — | 1P (r)in 2-dr il (B)
o (1) INR,— IR, { Rx[ 2 Pylry) . 1 ; 6 T r Folry R, 1

In accordance with the inversion formula [2], the formula which gives the original in terms of the
image of the function is given by the geries
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Prior to determining the constants Mfé) and Mg) the boundary eonditions (2) are modified and rewritten

as
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Applying the finite complex Fourier transformation to the conditions (7) the following totality of infinite
systems of linear algebraic equations is obtained for the determination of Mkl) and Mff
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in which the dash under the summation sign indicates that the term corresponding to j =k is omitted.
For k = 0 one obtains
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To investigate the system (8) and (10) one separates first the real and imaginary parts. One intro-
duces the notation
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and one obtains from (8) the following relations for the new unknowns m, and n;

5 5w

{mmk (ALY + DYOND) +kT2'! + [mD (4D, + AR ) LLD + (DD, + DY ) N{b)

=t

1

Qg(”

: 2 Loh* : ®
(AR AQ) NP+ O — DY LIY)] o [mf?) (5 -+ K (Rer R9) -2 (900 -+ 855 R R+

1

D= —
m(k}_

5

{mgnk. (D{OLED — ADND) + &

.Alcn

1
(1) — — .
n, 2g00

ﬁ i 5 [ ((D§Y, +D(1>)L(1>M(A<1> -+ AD) NGOy

i=l1

0 (A, — A LY — (DY, — D) M)

o [ (940 4 BB (R, R) =2 (40 s (Res RO)]| -+ az)

1

In the above the following notation was introduced:
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where ber(x), bei{x), ker(x) and kei(x) are Thomson functions of zero order of the first and second kind re-
spectively which are the real and imaginary parts of a Bessel function of the complex argument.
2
The values of the unknowns m(z)and n(k)are given by the following systems of equations:
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For k = 0 one has
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In this manner the totalities of the infinite systems (12), (14) and (16) have been obtained to determine mm

2), 'l ang ny’. To investigate these systems an estimate is found first of the sum of the moduli of the
coefficients of the unknowns m?y” and nYy’ of each of the equations. If one bears in mind the previously as~
sumed bounded variation of the functions hy{t) and h; @) in the interval (0, ) and uses an egtimate for the
Fourier coefficients of functions of bounded variation {3] as well as the Holder inequality one obtains after
some simplifications the following estimate for the sum 0'(1) of the moduli of the coefficients of the unknowns
in the k-th equation of the first gystem (12):

o< |/ gm [24:5 YR R TR R RS - gz], an

In the above H; and H, are the total variations of the functions h;(t) and h,{t) in the interval (0, &) respec~.
tively. Moreover, using an asymptotic repregentation for the Thomson functions [4] one obtains
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One can see from (19) that 0(1? approaches zero at a rate of okt / 4) and becomes less than unity starting

with some k. Similar estimates for the sums of the moduli of the coefficients are obtained in the remaining
systems (11) and (13). It can be seen from (13} and (15) that the free terms p(é) and qg) remain bounded in

their totality and also approach zero at a rate of oK™t/ 4. By the theory of infinite systems [5] the totality
of the systems (12}, (14) and (16) has a unique bounded solution and can be obtained by successive approxi-
mations.

By ingerting into (4) the values of M(é) and M(é) given by (11) and grouping together in (8) the conjugate
terms, onefinally obtains for u(r, t)
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It can be seen from (22), (11), (13), (18) and (19) that the terms of the series (21) decrease at the rate of
Ok + k_5/4e‘\/2”k(R2"r) + k“5/4e_\[2“k(r‘R1)), These estimates show that the series (21) together with its

first derivatives is convergent in the region Ry <r < R, and that at a point of discontinuity of the function
P(r, t) the function

(22)

converges to

1 ! '
i [P(r+0, t+0) =~ P(r-+0, t—0)+ P(r—0, t+0)-P(r—0, f*O)].
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If the values of the functions S;(t), S,(t), P(r, t) are given and also of the coefficients of heat exchange h,(t)
and hy(t) as well as the ratios R,/R; and a$/R%, and if the systems (12), (14) and (16) are solved the esti-
mates from above and from below are obtained for mi’and 0y’ subsequently, using the method described
in [6] one can find the values of u(r, t) both by deficiency and excess. It was shown in [7] that if the heat
exchange coefficients hy(t), h,(t) are actually given as well as the functions S;(t), S,(t) and P(xr, t) one can
considerably accelerate the rate of decreage in the coefficients determined from the infinite systems by a
transformation of the unknowns m{!and nﬁ?; thus the number of operations required to obtain the specified
in advance accuracy of the solution can be considerably reduced.

In conclusion some particular cases will be congidered.

a) The cases are considered in which h,(t) and h,(t) are periodic piecewise linear discontinuous func-
tions given by

kB (t—1%) t—9
) =hy+hy | > Elk LA, =12
(1) = 11': = (% ” 23)
where kj are positive integers and E (x) is the integral-part function. From (13) one obtaing
0  for kstkj,
A = 2l + By, AP =0, (k= 1), b= {—‘ hl—l for  k=Rkj,
e

where jis a positive integer.

The case is now considered in more detail in which, for example, k; =1, h,(t) = hy, = constant. It is
assumed as regards S,(t) and S,(t) that they are continuous and have a derivative which is of bounded varia-
tion almost everywhere. It is also assumed that P(r, t) =0. The system (12) is transformed by denoting

v

g = —";1 [vkkT S @v—a)k 7] LT

s
- 8 (24)
m =8, (00 —m:—2 Bm;j *
0 1 0 ’
j_Zl ]
R
v *
e
where
ad
v = M, 0 = gl%@i—(l +2hmR1+huRl)’
2 HRL
42
3 (25)
Y h,,a0 .
T =14 2v 2:; : —~—2—‘£;72:~(17~2h10R1)-
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To determine the new unknowns the following system of linear equations is obtained after some transforma-
tions by inserting the values m{ and nf{ from (21) into (12):
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If the asymptotic representation (18) and (19) for the Thomson functions is used one finds that the sums
of the moduli of the coefficients in the k-th equation of the system (26) as well as the free terms decrease
at the rate of O(k™/%).

Ag far ag 0 and n? are concerned the series appearing in Eq. {14) disappear in due time and m
and n{?) can be determined from the following expression:
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b) If by (t) and hy(t) are piecewise constant: hy(t) = b )for t(l) <t < t(]l) 1 one obtains
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where Q; is the number of discontinuities of the function hy(t) in the interval (0, ).
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¢) In the case in which the graph of the functions hy(t) and h,(f) represents a toothlike curve,
T 2Ryt kit Tln! B2 [ 2kt N ]
h(y =h fh.{*-i—-—MQE R {4::- L 2B~ 113
1O =t =y (ﬁ> | U B U
the Fourier coefficients of the functions by () and hy(t) are given by
fO for kRs=(2j—1) &,

AD = 2y —fyy,  AD = oy

D = Q,
-

for kR=(2f—1) &, #

"a fence":

d) For hi(t) = const and h,(f) = const the infinite systems of linear equations (12) and (14) degenerate

into equalities and the solution is then idenfical with the one obtained by using classical methods.
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